Question 1670 : For any non-zero real number x, let f(x)+2f(1/x)=3x. Then, the sum of all possible values of x for which f(x)=3, is
Video Explanation
Explanatory Answer
f(x)+2f(1x)=3x
Put x=1/x,
f(1x)+2f(x)=3x
Solving (1) & (2),
(1) ⇒
(1)⇒2×(2)⇒f(x)+2f(1x)=3x2f(1x)+4f(x)=6x
Subtracting, we get
3f(x)=6x−3x
So,
f(x)=2x−x
Now,
f(x)=3 implies, 2x−x=3x2+3x−2=0
Sum of the roots =−b/a
Answer =−3
The question is "For any non-zero real number x, let f(x)+2f(1x)=3x. Then, the sum of all possible values of x for which f(x)=3, is"