CAT Question Paper | CAT Verbal Ability Slot
CATKing Student
Question :

If a, b and c are positive real numbers such that a > 10 ≥ b ≥ c 
and 

     log₈(a + b)        log₂₇(a – b)
    ------------   +   --------------
      log₂ c             log₃ c

  =  2/3 ,

then the greatest possible integer value of a is <

Started 1 day ago by Admin in

Answer : 14

Explanatory Answer

log8(a+b)/log2c 
= {log(a+b)/log8} / {logc/log2} 
= (1/3) logc(a+b)

log27(a−b)/log3c 
= {log(a−b)/log27} / {logc/log3} 
= (1/3) logc(a−b)

(1/3) logc(a+b) + (1/3) logc(a−b) 
= (1/3) logc{(a+b)(a−b)} 
= (1/3) logc(a²−b²)

Given: (1/3) logc(a²−b²) = 2/3

⇒ logc(a²−b²) = 2  
⇒ a² − b² = c²

So, a² = b² + c²

Since a > 10 ≥ b ≥ c,  
a should be an integer.  
The greatest possible integer value of a is possible if b = c = 10.

Then:  
a² ≤ 100 + 100 = 200  
⇒ a ≤ √200 ≈ 14.14

∴ The maximum integer value of a = 14

  • No one is replied to this question yet. Be first to reply!